A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate.

نویسندگان

  • Nico Dunkel
  • Teresa T Liu
  • Katherine S Barker
  • Ramin Homayouni
  • Joachim Morschhäuser
  • P David Rogers
چکیده

In the pathogenic yeast Candida albicans, the zinc cluster transcription factor Upc2p has been shown to regulate the expression of ERG11 and other genes involved in ergosterol biosynthesis upon exposure to azole antifungals. ERG11 encodes lanosterol demethylase, the target enzyme of this antifungal class. Overexpression of UPC2 reduces azole susceptibility, whereas its disruption results in hypersusceptibility to azoles and reduced accumulation of exogenous sterols. Overexpression of ERG11 leads to the increased production of lanosterol demethylase, which contributes to azole resistance in clinical isolates of C. albicans, but the mechanism for this has yet to be determined. Using genome-wide gene expression profiling, we found UPC2 and other genes involved in ergosterol biosynthesis to be coordinately upregulated with ERG11 in a fluconazole-resistant clinical isolate compared with a matched susceptible isolate from the same patient. Sequence analysis of the UPC2 alleles of these isolates revealed that the resistant isolate contained a single-nucleotide substitution in one UPC2 allele that resulted in a G648D exchange in the encoded protein. Introduction of the mutated allele into a drug-susceptible strain resulted in constitutive upregulation of ERG11 and increased resistance to fluconazole. By comparing the gene expression profiles of the fluconazole-resistant isolate and of strains carrying wild-type and mutated UPC2 alleles, we identified target genes that are controlled by Upc2p. Here we show for the first time that a gain-of-function mutation in UPC2 leads to the increased expression of ERG11 and imparts resistance to fluconazole in clinical isolates of C. albicans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance.

Upc2p, a transcription factor of the zinc cluster family, is an important regulator of sterol biosynthesis and azole drug resistance in Candida albicans. To better understand Upc2p function in C. albicans, we used genomewide location profiling to identify the transcriptional targets of Upc2p in vivo. A triple hemagglutinin epitope, introduced at the C terminus of Upc2p, conferred a gain-of-func...

متن کامل

Quantitation of ergosterol content and gene expression profile of ERG11 gene in fluconazole-resistant Candida albicans

Background and Purpose: The frequency of opportunistic fungal infections in immunocompromised patients, especially by Candida species, has sharply increased in the last few decades. The objective of this study was to analyse the ergosterol content and gene expression profiling of clinical isolates of fluconazole resistant Candida albicans. Materials and Methods: Sixty clinical samples were ide...

متن کامل

The Transcription Factor Ndt80 Does Not Contribute to Mrr1-, Tac1-, and Upc2-Mediated Fluconazole Resistance in Candida albicans

The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis, by the overexpression of genes encoding multidrug efflux pumps or ergosterol biosynthesis enzymes. Zinc cluster transcription factors play a central role in the transcriptional regulation of drug resistance. Mrr1 regulates the expression of the ma...

متن کامل

Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism.

In Candida albicans, drug resistance to clinically important antifungal drugs may be regulated through the action of transcription factors in a manner that may or may not be similar to regulation in Saccharomyces cerevisiae. A search of the C. albicans genome identified a single homolog of the S. cerevisiae transcription factor genes UPC2 (ScUPC2) and ECM22 (ScECM22) that have been associated w...

متن کامل

Computational insights into fluconazole resistance by the suspected mutations in lanosterol 14α-demethylase (Erg11p) of Candida albicans

Mutations in the ergosterol biosynthesis gene 11 (ERG11) of Candida albicans have been frequently reported in fluconazole-resistant clinical isolates. Exploring the mutations and their effect could provide new insights into the underlying mechanism of fluconazole resistance.  Erg11p_Threonine285Alanine (Erg11p_THR285ALA), Erg11p_Leucine321Phenylalanine (Erg11p_LEU321PHE) and Erg11p_Serine457Pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 7 7  شماره 

صفحات  -

تاریخ انتشار 2008